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Periodic buckling of smectic-A tubular filaments in an isotropic phase has been investigated both experi-
mentally and theoretically in the binary mixture of octyloxycyanobiphenyl and dodecyl alcohol. As the mixture
is cooled, straight filaments become unstable and continuously buckle by elongating at a constant periodicity.
An analytical solution to the minimization of the curvature elastic energy of the smectic-A filament has been
shown, and is consistent with the shapes of the buckled filaments. In addition, the dependence of the load on
the length of the filament has been numerically calculated, and the critical buckling load of the smectic-A
filament has been found to be of the order of 1 pN.
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I. INTRODUCTION

A smectic-A phase exhibits a variety of spatial patterns
during its growth process from an isotropic phase[1–8]. One
of the most interesting examples of the processes is the for-
mation of smectic-A filamentally structures and their ther-
motemporal evolution[4–7]. These filaments have a tubular
structure(a cylindrical structure with an isotropic core) re-
flected by the smectic-A layer structure with well-defined
spacing[4–6]. Smectic-A straight filaments elongate when
liquid crystal (LC) materials are cooled from an isotropic
phase. Upon further cooling, these straight filaments become
unstable and buckle continuously[4–6]. We note that the
buckled filaments grow at constant periodicity(Fig. 1), and
the periodically buckled filaments retain their shapes at a
constant temperature.

Such a buckling phenomenon is similar to the buckling of
elastic columns known in classical mechanics[9]. A column
subjected to compression undergoes displacements trans-
verse to the load when the increasing load reaches the critical
buckling load(the Euler load) [9]. Recently, layer buckling
in bulk smectic-A LC has been reported[10,11]. However,
the periodic buckling of smectic-A filaments reported in this
paper is apparently different from the layer buckling in bulk
smectic-A LC. In addition, no theoretical studies have been
made on the growth of smectic-A filaments from the view-
point of the buckling of elastic tubes.

In this paper, we study the periodic buckling of smectic-A
filaments both experimentally and theoretically. We first de-
scribe observations of the pattern formation of periodic
buckling of smectic-A tubular filaments in an isotropic phase.
Second, we describe the curvature elastic energy of the
smectic-A filament. We then derive the shape equations for
the smectic-A filament from the minimization of the curva-
ture elastic energy with the periodic boundary condition. We
find that an analytical solution to the shape equations well
describes shapes of the periodically buckled filaments ob-
served in the experiments. The dependence of the load on the
length of the filament is numerically calculated based on the

principle of virtual work using the analytical solution, and
found to decrease with the lateral displacement of the buck-
led filament. We show that the critical buckling load is of the
order of 1 pN.

II. EXPERIMENTAL SETUP AND RESULTS

Dodecyl alcohol(DODA) was mixed with octyloxycy-
anobiphenyl(8OCB) (a molar ratio of 8OCB to DODA is 4
to 6) to suppress a nematic phase and to observe a smectic-A
phase in an isotropic phase[5]. Liquid crystal cells with
dimensions of 10 mm310 mm3100 mm were filled with
the mixture. The LC cells were cooled at,0.05°C/min
from the isotropic phase to the coexisting region of the
smectic-A and isotropic phases to observe smectic-A fila-
ments. The temperature of the LC cells was controlled in a
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FIG. 1. Periodic buckling of a smectic-A filament observed at
41.0°C with polarizer and analyzer crossed. The cooling rate was
−0.05°C/min. The barindicates 50mm.
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hot stage(Instec HS1-i). The pattern formation of smectic-A
filaments was observed with a polarizing microscope(Nikon
X2TP-11) equipped with a CCD camera(Hitachi KP-F100).

A smectic-A phase initially appears in the form of spheri-
cal droplets at,40°C when we cooled LC cells from an
isotropic phase. These spherical droplets grow in size and
then start elongating from the spherical droplets into straight
filaments[Fig. 2(a)]. The filaments consist of concentric cy-
lindrical smectic-A layers. The director of the smectic-A mol-
ecules is parallel to the layer normal[12]. Upon further cool-
ing, the straight filaments buckle continuously at a constant
periodicity by elongation[Figs. 2(b)–2(d)]. The periodicity
of the buckled filaments is determined by the cooling rate at
the initial stage of the periodic buckling instability of the
straight filaments[15]. To show the metastability of the
buckled filaments, we observe the filaments in cooling and
heating cycles at,0.01°C/min and at a constant tempera-
ture. Once the periodicity appears, the buckling process is
found to be reversible with temperature, and these filaments
retain their shape and position at a constant temperature.
These results reveal that on cooling the buckled filaments are
regarded as being in quasiequilibrium(mechanical equilib-
rium [13]) at each moment but not in thermal equilibrium.

III. THEORY

In this section, we solve the curvature elastic energy mini-
mization problem for smectic-A filaments to predict the
shapes of the buckled filaments theoretically. For the descrip-

tion of quasiequilibrium shapes of the smectic-A phase in an
isotropic phase, we have proposed the free energy of the
smectic-A phase consisting of the bulk energy(the Gibbs
free energy differences between the isotropic and the
smectic-A phases, and the curvature elastic energy of the
smectic-A phase) and the interfacial energy(the surface en-
ergy of isotropic-smectic-A interface) [3,6]. In this paper, we
deal with the time evolution of the smectic-A buckled fila-
ments instead of thermal equilibrium shapes of the smectic-A
phase. To do this, we assume that the filaments have a tubu-
lar structure with a thickness ofro−ri, wherero and ri are
the outer and inner radii of the tube, respectively, since the
existence of the inner isotropic core in smectic-A filaments
has been reported in Ref.[5]. We then treat the periodicity of
the buckled filaments and the values ofro and ri as being
constant based on the experimental results, wherero andri
are determined as a function of the Gibbs free energy differ-
ences at the initial stage of the growth of the filaments[5,6].
In addition, we regard the buckling filaments, where lengths
of the filaments change with time, as in quasiequilibrium at
each moment of the growth process(in the calculation we
treat the values of the lengths of the filaments as being con-
stant). Therefore, we do not need to take into account the
Gibbs free energy differences and the interfacial energy, and
solve the curvature elastic energy minimization problem with
those constant values of the buckled filaments measured
from the experiment.

We first describe the general form of the curvature elastic
energy of a smectic-A filament in an isotropic phase to derive
the shape equations for the buckled filament. The curvature
elastic energy of the smectic-A filamentsFCd is given by[6]

FC = kcE
C

kssd2ds+ ksE
C

ds, s1d

where kc=pk11sro
2−ri

2d /4, k11 is the splay elastic constant,
kssd is the curvature defined alongrssd, rssd is the axial
curve of the filament, andks=pk11lnsro/rid. Equation(1) is
valid under the conditioniṙssdi=1, whereṙ =dr /ds [in this
case,s is defined as the arc length measured from a fixed
point on rssd]. In order to derive the first variation ofFC

using a variational method, we regards asssud, and express
FC andrssd as a function ofu. Sinceu is an arbitrary variable
(irsud /dui=1 is not satisfied), FCfrsudg is the general expres-
sion of Eq. (1). To do this, we replaceds with Îr8 ·r8du,
wherer8=dr /du. kssd is recalculated from the differentiation
with respect todu as a function ofu, and we obtain

ksud2 = F 1
Îr8 · r8

d

duH 1
Îr8 · r8

dr

duJG2

= H r9 · r9

sr8 · r8d2 −
sr9 · r8d2

sr8 · r8d3J , s2d

wherer9=d2r /du2. Therefore, the general expression of the
curvature elastic energy of the filamentFCfrsudg, has the
form

FIG. 2. Growth sequence of the smectic-A filament at
−0.05°C/min observed with polarizer and analyzer crossed. Photo-
graphs(b), (c) and (d) show the same sample as in photograph(a)
after 60, 120, and 150 s, respectively. Parenthesized figures corre-
spond to lengths of the filaments per period. The bars indicate
50 mm. (a) 0 ss70.4mmd. (b) 60 ss78.4mmd. (c) 120 ss122.6mmd.
(d) 150 ss178.0mmd.
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FCfrsudg =E
C

kcH r9 · r9

sr8 · r8d2 −
sr9 · r8d2

sr8 · r8d3JÎr8 · r8du

+ ksE
C

Îr8 · r8du. s3d

Next, we solve the minimization problem ofFCfrsudg sub-
jected to the constraint condition that the length of the fila-
ment is not changed(we regard the buckled filaments as in
quasiequilibrium at each moment based on the experimental
results). We defineF=Ffrsudg as

Ffrsudg =E
C

kcH r9 · r9

sr8 · r8d2 −
sr9 · r8d2

sr8 · r8d3JÎr8 · r8du

+ xE
C

hÎr8 · r8 − 1jdu, s4d

where x is the Lagrange multiplier. In Eq.(4), the second
term of Eq. (3), which is proportional to the length of a
filament, is disregarded because of the constraint condition.
Let rsud be the minimum solution ofF at t, and we have the
Taylor expansion ofFfrsud+hsudg aboutrsud,

Ffrsud + hsudg = Ffrsudg + dF + d2F + d3F + ¯ , s5d

wherehsud is a perturbation onrsud and a sufficiently small
differentiable vector.dF is the first variation ofFfrsud
+hsudg, and is given by

dF =E
C
H ] I

] r
hT +

] I

] r8
h8T +

] I

] r9
h9TJdu, s6d

where

I = kcH r9 · r9

sr8 · r8d2 −
sr9 · r8d2

sr8 · r8d3JÎr8 · r8 + xsÎr8 · r8 − 1d,

s7d

h8=dh /du, and h9=d2h /du2. The condition necessary to
minimize FC subjected to the constraint condition is

dF = 0. s8d

From Eqs.(6) and (8), we have

E
C
H ] I

] r
hT +

] I

] r8
h8T +

] I

] r9
h9TJdu= 0. s9d

dF is also expressed as

dF = F ] I

] r8
hT +

] I

] r9
h8T −

d

du
H ] I

] r9
JhTG

0

u

+E
C
H ] I

] r
−

d

du
H ] I

] r8
J +

d2

du2H ] I

] r9
JJhTdu. s10d

It is reasonable to assume thatrsud and hsud are periodic
functions of u because in the experiment the straight fila-
ments buckle continuously at a constant periodicity as they
grow (Fig. 2). Then, the first term of Eq.(10) vanishes. Thus,
Eq. (8) is rewritten as

] I

] r
−

d

du
H ] I

] r8
J +

d2

du2H ] I

] r9
J = 0. s11d

Equation(11) is the Euler-Lagrange equation forF. We sub-
stitute I [Eq. (7)] into Eq. (11). Each term of Eq.(11) is
calculated as follows:

] I

] r
= 0, s12d

−
d

du
H ] I

] r8
J = kcH2sr9 · r8dr s3d

sr8 · r8d5/2 +
2sr s3d · r8dr9
sr8 · r8d5/2 +

5sr9 · r9dr9
sr8 · r8d5/2

+
6sr s3d · r9dr8
sr8 · r8d5/2 −

10sr9 · r8dsr s3d · r8dr8
sr8 · r8d7/2

−
15sr9 · r8d2r9

sr8 · r8d7/2 −
25sr9 · r8dsr9 · r9dr8

sr8 · r8d7/2

+
35sr9 · r8d3r8

sr8 · r8d9/2 J − xH r9
sr8 · r8d1/2

−
sr9 · r8dr8
sr8 · r8d3/2J , s13d

d2

du2H ] I

] r9
J = kcH 2r s4d

sr8 · r8d3/2 −
10sr s3d · r8dr9

sr8 · r8d5/2 −
10sr9 · r9dr9
sr8 · r8d5/2

−
2sr s4d · r8dr8
sr8 · r8d5/2 −

6sr s3d · r9dr8
sr8 · r8d5/2 −

14sr9 · r8dr s3d

sr8 · r8d5/2

+
50sr9 · r8d2r9

sr8 · r8d7/2 +
30sr9 · r9dsr9 · r8dr8

sr8 · r8d7/2

+
30sr s3d · r8dsr9 · r8dr8

sr · r8d7/2 −
70sr9 · r8d3r8

sr8 · r8d9/2 J .

s14d

r8, r9, r s3d=d3r /du3 and r s4d=d4r /du4 are, respectively, ex-
pressed as

r8 = t
ds

du
, s15d

r9 = k mS ds

du
D2

+ t
d2s

du2 , s16d

r s3d = h− k2 t + k̇m − kt bjS ds

du
D3

+ 3k m
d2s

du2

ds

du
+ t

d3s

du3

s17d

and

r s4d = h− 3kk̇t + s− k3 + k̈ − kt2dm + s− 2k̇t − kṫdbjS ds

du
D4

+ 6h− k2 t + k̇m − kt bj
d2s

du2S ds

du
D2

+ 3k mS d2s

du2D2

+ 4k m
d3s

du3

ds

du
+ t

d4s

du4 , s18d
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where m=mssd, b=bssd, and t= tssd are the normal, binor-
mal, and tangential vectors ofrssd, respectively, andk̇, k̈,
and ṫ are k̇=dk /ds, k̈=d2k /ds2, and ṫ=dt /ds, respectively.
Substituting Eqs.(12)–(18) into Eq. (11), and disregarding
the higher terms ofds/du (d2s/du2, d3s/du3, andd4s/du4),
we obtain the shape equations

kcsk3 − 2kt2 + 2k̈d − xk = 0, s19d

2k̇t + kṫ = 0. s20d

These are the shape equations for the buckled filament sub-
jected to the constraint condition(the length of the filament
is constant).

IV. DISCUSSION

We show an analytical solution to the shape equations
[Eqs.(19) and (20)]. We define the tangential unit vector of
rssd to be

tssd = fcosfssd,sin fssd,0g. s21d

Inserting Eq.(21) into Eqs.(19) and (20) we have

ḟ2 =
x

kc
+

f

kc
cosffssd − f0g, s22d

where f is a positive constant,f0 is an integration constant,
andḟ=df /ds. Figure 3 shows the solutions to Eq.(22) with
different values off andx. The values used in the calculation
werero=3.0 mm, ri =0.7 mm, k11=10 pN [14], and f =1.10,
0.93, 0.46, and 0.25 pN andx=−1.10, −0.74, −0.09, and
0.02 pN for(a), (b), (c), and(d) in Fig. 3, respectively.f and

x are constants determined by the periodicity and the length
of the buckled filaments.f corresponds to the load on the
smectic-A filament, and the ratio ofx to f ranges from −1 to
1 and determines the shape of the buckled filament[7]. We
see from Fig. 3 that the shapes obtained from the solutions to
Eq. (22) are in quantitative agreement with the experimental
results shown in Fig. 2. Therefore, it is shown that the peri-
odically buckled filaments observed in the experiments are a
form to minimize the curvature elastic energy of the smectic-
A filaments under the constraint condition that the values of
ro andri, and the periodicity and the lengths of the buckled
filaments are constant.

Equation(22) has a similar form to the solution derived
by Zhou and Ou-Yang[7], which describes shapes of quench
induced pattern formation of smectic-A filaments in an iso-
tropic phase. In the initial stage of the growth of the smectic-
A filaments at a rapid cooling rate of.0.1°C/min, the in-
crease in the amplitude of buckling filaments along the
growth direction is observed[6]. To explain the shapes of
increasing amplitude of buckling filaments, they have as-
sumed in Ref.[7] that the system is subjected to rapid cool-
ing and no longer satisfies a quasiequilibrium condition, and
that the value ofk11 increases because of structural transition
in the smectic-A filaments at the molecular level during the
growth process, such as thetrans to cis transition in alkyl
chains of 8OCB molecules[6,7]. Using the solution derived
by Zhou and Ou-Yang under the assumptions described
above, they have been able to explain the shapes of the in-
creasing amplitude of buckling filaments. They have con-
cluded that the growth of the buckling filaments results from
increasing curvature elastic energy converted from latent
heat, and the increase ink11 causes the increase in amplitude
of buckling filaments. Since we control LC cell temperature
carefully at slow cooling rates of,,0.05°C/min, we re-
gard that the buckling filaments are in quasiequilibrium and
that the value ofk11 is a constant.

In bulk smectic-A LC, the layer buckling[10] is known as
external(electric or magnetic) field-induced transition. The
periodically buckled filaments shown here are apparently dif-
ferent from the field-induced transition. Layer buckling in
the smectic-A phase induced by dilative strain has been re-
ported [11], however, this layer buckling is also different
from the buckling filaments because the buckling filaments
consist of concentric tubes, whereas the bulk LCs consist of
stacked planes of a smectic-A phase.

It is likely that the buckling of smectic-A filaments is a
phenomenon similar to that of elastic columns known in
classical mechanics; elastic columns undergo displacements
when applied forces reach the critical buckling loads[9]. The
differences between the buckling of the smectic-A filaments
and that of elastic columns are the driving forces and the
internal forces which occur when the bodies buckle. The
driving forces for buckling of elastic columns are externally
applied forces. Under the action of applied forces, the elastic
columns change in shape and volume while keeping their
masses, and extension and compression parts in the de-
formed columns cause internal forces. In case of the smectic-
A filaments, the driving forces for buckling originate in the
elongation(growth) of the filaments(this is the origin of the
loads on the smectic-A filaments), and the changes in mass as

FIG. 3. Solutions to the shape equations for a buckled filament
corresponding to the filaments shown in Fig. 2. The bars indicate
50 mm.
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well as in shape and volume take place when the bodies
buckle. In addition, the buckling causes no extension or com-
pression parts of the smectic-A filaments since the filaments
consist of smectic-A layers that are regarded as two-
dimensional liquids[14]. Only the internal forces caused by
the splay deformation in smectic-A filaments occur in this
case. During the growth of the buckled filaments, the forces
caused by the splay deformation are balanced at each mo-
ment with the loads.

To understand the difference between the smectic-A fila-
ments and the elastic columns, we numerically calculate the
dependence of the load on the length of the filament[the
lateral displacement(amplitude) of the buckled filament
grows with the length of the filament] based on the principle
of virtual work using Eqs.(3) and (22). We see from Fig. 4
that the critical buckling load of the filament is of the order
of 1 pN and the load decreases with the length of the fila-
ment. It should be noted that the load of buckled elastic
columns increases with the lateral displacement since the
elastic columns buckle while keeping the mass constant.
Zhou and Ou-Yang have estimated the average forces asso-
ciated with the growth process of the buckled filaments to be
of the order of 0.1 pN[7] (they use different assumptions
from ours and have not mentioned the critical buckling
forces), which is consistent with the values corresponding to
the lengths in the 250 to 500mm range shown in Fig. 4. It is
interesting to note that the forces related to polymeric strings
are often of the order of 10−2 to 10 pN [16,17].

V. CONCLUSIONS

We have studied the periodic buckling of smectic-A fila-
ments both experimentally and theoretically. We have de-
scribed the curvature elastic energy of the smectic-A filament
by taking into account the internal forces caused by the splay
deformation in smectic-A filaments. Then, we have derived
the shape equations of the smectic-A filament with the peri-
odic boundary condition from the minimization of the curva-
ture elastic energy with the periodic boundary condition. It
has been found that an analytical solution to the shape equa-
tions well describes shapes of the periodically buckled fila-
ment observed in the experiments. The buckling of smectic-
A filaments is different from the layer buckling in bulk
smectic-A LC in the sense that the smectic-A filaments in an
isotropic phase have a cylindrical structure, and the filaments
buckle not because of external-field application but because
of forces originating in the elongation of the filaments. It is
likely that the buckling of the filaments is a phenomenon
similar to that of elastic columns described in classical me-
chanics.

The dependence of the load on the length of the filament
has been numerically calculated based on the principle of
virtual work. We have found that the critical buckling load is
of the order of 1 pN and the load decreases with the lateral
displacement(amplitude) of the buckled filament. The de-
pendence of the load is contrary to that for elastic columns,
where the load of a buckled elastic column increases with the
lateral displacement. This is because the elastic column
buckles while keeping the mass constant, whereas the
smectic-A filament buckles with an increase in length, and
the buckling of the smectic-A filament causes no extension or
compression parts of the filament.
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