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Periodic buckling of smecticA tubular filaments in an isotropic phase
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Periodic buckling of smectié: tubular filaments in an isotropic phase has been investigated both experi-
mentally and theoretically in the binary mixture of octyloxycyanobiphenyl and dodecyl alcohol. As the mixture
is cooled, straight filaments become unstable and continuously buckle by elongating at a constant periodicity.
An analytical solution to the minimization of the curvature elastic energy of the sm&dti@ment has been
shown, and is consistent with the shapes of the buckled filaments. In addition, the dependence of the load on
the length of the filament has been numerically calculated, and the critical buckling load of the siectic-
filament has been found to be of the order of 1 pN.
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[. INTRODUCTION principle of virtual work using the analytical solution, and
found to decrease with the lateral displacement of the buck-

A smecticA phase exhibits a variety of spatial patterns eq filament. We show that the critical buckling load is of the
during its growth process from an isotropic phge8. One  qer of 1 pN.

of the most interesting examples of the processes is the for-
mation of smectidA filamentally structures and their ther-
motemporal evolutiorji4—7]. These filaments have a tubular

structure(a cylindrical structure with an isotropic coree- Dodecyl alcohol(DODA) was mixed with octyloxycy-
flected by the smectié- layer structure with well-defined anobiphenyk80CB) (a molar ratio of 8OCB to DODA is 4
spacing[4—€]. SmecticA straight filaments elongate when 4 6) 1o suppress a nematic phase and to observe a snfectic-
liquid crystal (LC) materials are cooled from an isotropic phase in an isotropic phad8]. Liquid crystal cells with
phase. Upon further cooling, these straight filaments becomgimensions of 10 mm 10 mmx 100 um were filled with
unstable and buckle continuousf4—€|. We note that the  {nhe mixture. The LC cells were cooled at0.05°C/min
buckled filaments grow at constant periodicifig. 1), and  fom the isotropic phase to the coexisting region of the
the periodically buckled filaments retain their shapes at &mecticA and isotropic phases to observe smegtifila-

constant temperature. S _ ments. The temperature of the LC cells was controlled in a
Such a buckling phenomenon is similar to the buckling of

elastic columns known in classical mechanigks A column
subjected to compression undergoes displacements tran
verse to the load when the increasing load reaches the criticg
buckling load(the Euler loagl [9]. Recently, layer buckling
in bulk smecticA LC has been reportefl0,11. However,
the periodic buckling of smectié-filaments reported in this
paper is apparently different from the layer buckling in bulk
smecticA LC. In addition, no theoretical studies have been
made on the growth of smect&-filaments from the view-
point of the buckling of elastic tubes.

In this paper, we study the periodic buckling of smetic-
filaments both experimentally and theoretically. We first de-
scribe observations of the pattern formation of periodic
buckling of smecticA tubular filaments in an isotropic phase.
Second, we describe the curvature elastic energy of thg
smecticA filament. We then derive the shape equations for
the smecticA filament from the minimization of the curva-
ture elastic energy with the periodic boundary condition. We
find that an analytical solution to the shape equations well
describes shapes of the periodically buckled filaments ob
served in the experiments. The dependence of the load on't
length of the filament is numerically calculated based on the

Il. EXPERIMENTAL SETUP AND RESULTS

FIG. 1. Periodic buckling of a smectik-filament observed at
41.0°C with polarizer and analyzer crossed. The cooling rate was
*Electronic address: naito@pe.osakafu-u.ac.jp —0.05°C/min. The baiindicates 50um.
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tion of quasiequilibrium shapes of the smeddg@hase in an
isotropic phase, we have proposed the free energy of the
smecticA phase consisting of the bulk energihe Gibbs
free energy differences between the isotropic and the
smecticA phases, and the curvature elastic energy of the
smecticA phaseé and the interfacial energgthe surface en-
ergy of isotropic-smectié: interface [3,6]. In this paper, we
deal with the time evolution of the smecticbuckled fila-
ments instead of thermal equilibrium shapes of the sméctic-
phase. To do this, we assume that the filaments have a tubu-
lar structure with a thickness @f,—p;, wherep, and p; are
the outer and inner radii of the tube, respectively, since the
existence of the inner isotropic core in smedidiaments
has been reported in R¢b]. We then treat the periodicity of
the buckled filaments and the values mfand p; as being
constant based on the experimental results, wigr@nd p;
are determined as a function of the Gibbs free energy differ-
ences at the initial stage of the growth of the filamdbt$].
In addition, we regard the buckling filaments, where lengths
of the filaments change with time, as in quasiequilibrium at
each moment of the growth proce@s the calculation we
treat the values of the lengths of the filaments as being con-
FIG. 2. Growth sequence of the smedhicfilament at stan). Therefore, we do not need to take into account the
—0.05°C/min observed with polarizer and analyzer crossed. PhotoGibbs free energy differences and the interfacial energy, and
graphs(b), (c) and(d) show the same sample as in photogré@h  solve the curvature elastic energy minimization problem with
after 60, 120, and 150 S, respectively. Parenthesized figures COIrehose constant values of the buckled filaments measured
spond to lengths of the filaments per period. The bars indicatg gm the experiment.
50 um. (a) 0 9(70.4 um). (b) 60 78.4 um). (c) 120 4122.6 um). We first describe the general form of the curvature elastic
(d) 150 £178.0um). energy of a smectié filament in an isotropic phase to derive
the shape equations for the buckled filament. The curvature
hot stagginstec HS14. The pattern formation of smect®&-  elastic energy of the smecti&filament(Fc) is given by[6]
filaments was observed with a polarizing microsc@dion
X2TP-11) equipped with a CCD cameialitachi KP-F100.
A smecticA phase initially appears in the form of spheri- Fc= kcf k(s)’ds+ ksf ds, (1)
cal droplets at~40°C when we cooled LC cells from an c C
isotropic phase. These spherical droplets grow in size and
then start elongating from the spherical droplets into straighfvhere kc:Tfku(Pg—PiZ)M, ki, is the splay elastic constant,
filaments[Fig. Aa)]. The filaments consist of concentric cy- «(s) is the curvature defined alongs), r(s) is the axial
lindrical smecticA layers. The director of the smecticmol-  cyrve of the filament, anlls=mky,In(p,/ p;). Equation(l) is
ecules is parallel to the layer nornfal]. Upon further cool-  y4jig under the conditioti (s)|=1, where =dr/ds [in this
ing, the straight filaments buckle continuously at a constan&ase’s is defined as the arc length measured from a fixed
periodicity by elongatior{Figs. 2b)-2(d)]. The periodicity  hoint onr(s)]. In order to derive the first variation dfe
of the buckled filaments is determined by the cooling rate aEsing a variational method, we regasess(u), and express

the initial stage of the periodic buckling instability of the F. andr(s) as a function ofi. Sinceu is an arbitrary variable

straight filaments[15]. To show the metastability of the . o .
buckgljed filaments[ v?e observe the filaments in c>(/)oling ané”r(u)/duﬂzl is not satisfiey] F[r(u)] is the general expres-

i i et !
heating cycles at-0.01°C/min and at a constant tempera- sion Oqu'(l)' To d_o this, we replacels W'th. vreer _dul
ture. Once the periodicity appears, the buckling process i _herer =dr/du. «(s) is recallculated from the d|ffgrent|at|on
found to be reversible with temperature, and these filament¥ith respect tedu as a function o, and we obtain
retain their shape and position at a constant temperature.

These results reveal that on cooling the buckled filaments are ()2 = 1 d 1 dr 2
regarded as being in quasiequilibriuimechanical equilib- K== Jr'or'dul V' ' du
rium [13]) at each moment but not in thermal equilibrium. ( 2
r!/ . r// r// . r/
= - , 2
{(r;.r/)z (rl_r/)S} ( )

Ill. THEORY

In this section, we solve the curvature elastic energy miniwherer”=d? /dw?. Therefore, the general expression of the
mization problem for smectié filaments to predict the curvature elastic energy of the filameRg[r(u)], has the
shapes of the buckled filaments theoretically. For the descrigorm
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Equation(11) is the Euler-Lagrange equation f6r We sub-

+ksf Nr'-r'du. (3)  stitute | [Eq. (7)] into Eq. (11). Each term of Eq(11) is
¢ calculated as follows:
Next, we solve the minimization problem B§[r(u)] sub- 9l
jected to the constraint condition that the length of the fila- P 0, (12
ment is not changed@ve regard the buckled filaments as in
quasiequilibrium at each moment based on the experimental v @) e y o
resulty. We defineF=F[r(u)] as alal =k, 20" + 2" S0 -r)r
, dU (I" -I")SIZ (r/ -l")5/2 (I” . r1)5/2
rl! . r!/ r” r
Flr(u)] :J kc{ —- ( )3}\,ﬁdu 6(r @y 200 1)@ e
C (r T ) (r ) ( ’ 1)5/2 - (rr rr)7/2
+ Xf {\/ﬁ_ l}du, (4) ~ 15( n . /)2 n _ 25(r// . r/)(rll . r//)rl
C (I’ i )7/2 (r/ _r/)7/2
where y is the Lagrange multiplier. In Eq4), the second 35" - r')3r’ "
term of Eq.(3), which is proportional to the length of a + (r'-r')%2 B (r )1/2
filament, is disregarded because of the constraint condition.
Let r(u) be the minimum solution of att, and we have the " (19
Taylor expansion of[r(u)+ »(u)] aboutr(u), (r r )3/2 '

Flr(u) + ﬂ(U)] =Fr(w]+ oF + FF+PF+ , (5 d? | a1 or4 lqr(?:) O T 1o (S T
wherez(u) is a perturbation om(u) and a sufficiently small g2 | a¢" [ ~ ke (r 132 (pr )32 (prpr)BR2
differentiable vector.oF is the first variation ofF[r(u) @ s @ o @
+5(u)], and is given by 2t 6’ 1A -r')r

(r/ i r/)5/2 (r/ . r/)5/2 (r/ .rr)5/2
SF = f { T+ _/ !T+ _”,']/IT} (6) Scxrr/ . r/)2r1/ 30(r” i r//)(r// ) r/)r/
ar ar (r/ . /)7/2 + (r/ r./)7/2
where 30(r © r )(r// . /)rl ~ 7O(rr/ . rr)Br/
I ( "y ) | (r r )7/2 (r/ _r1)9/2 .
= P X -,
kc{ (rr? (' )3} X (14)
(7

7' =dn/du, and %'=d?p/d?. The condition necessary to
minimize F¢ subjected to the constraint condition is

6F=0. (8)
From Egs.(6) and(8), we have
al + adl . adl -
""+—5"" (du=0. 9
f{arn o g™ } ®)

SF is also expressed as

al o al od)ar| L]
= —n'+—
{ar’” ar”” du ar” n 0

al d] gl d* | gl T
AR o B RO

It is reasonable to assume thdt)) and #(u) are periodic

functions ofu because in the experiment the straight fila-
ments buckle continuously at a constant periodicity as they

grow (Fig. 2. Then, the first term of Eq10) vanishes. Thus,
Eq. (8) is rewritten as

r', 1", r®@=d%/du® and r®=d*%/du* are, respectively, ex-
pressed as

I=t— 15
T (15
"= m(d—s)zﬂd—ZS (16)
~Ndu) " e
. ds)\3 d’sd d?
r®={-k?t+km-«r b}(d_LSJ) + 3k md—;d—j+t£
(17)

and

) ) ) ds\*
r@ ={-3kkt+ (- K>+ k — kP)M+ (- 2k7— KT)b}(d_j>

d%s( d d’s
+6{-« t+ km - "Tb}du2<dz> + 3 m(duz)
d®sds d%

addu o

+ 4k m— (18)

021701-3



x are constants determined by the periodicity and the length
of the buckled filamentst corresponds to the load on the
smecticA filament, and the ratio of to f ranges from -1 to

1 and determines the shape of the buckled filanfiéhtWe

see from Fig. 3 that the shapes obtained from the solutions to
Eq. (22) are in quantitative agreement with the experimental
results shown in Fig. 2. Therefore, it is shown that the peri-
odically buckled filaments observed in the experiments are a

TODOROKIHARA, IWATA, AND NAITO PHYSICAL REVIEW E 70, 021701(2004
form to minimize the curvature elastic energy of the smectic-
A filaments under the constraint condition that the values of

L| L po @ndp;, and the periodicity and the lengths of the buckled
filaments are constant.

Equation(22) has a similar form to the solution derived
by Zhou and Ou-Yang7], which describes shapes of quench
induced pattern formation of smectcfilaments in an iso-
tropic phase. In the initial stage of the growth of the smectic-
A filaments at a rapid cooling rate 6f0.1°C/min, the in-
crease in the amplitude of buckling filaments along the
growth direction is observefb]. To explain the shapes of
increasing amplitude of buckling filaments, they have as-
sumed in Ref[7] that the system is subjected to rapid cool-
ing and no longer satisfies a quasiequilibrium condition, and

that the value ok, increases because of structural transition
n the smecticA filaments at the molecular level during the
Pgrowth process, such as thans to cis transition in alkyl
chains of 80OCB moleculel®,7]. Using the solution derived
_ by Zhou and Ou-Yang under the assumptions described
wherem=m(s), b=b(s), andt=t(s) are the normal, binor- apove, they have been able to explain the shapes of the in-
mal, and tangential vectors ofs), respectively, and¢, k,  creasing amplitude of buckling filaments. They have con-
and 7 are k=dk/ds, k=d?«/ds’, and 7=d7/ds, respectively. cluded that the growth of the buckling filaments results from
Substituting Eqs(12<(18) into Eq. (11), and disregarding increasing curvature elastic energy converted from latent
the higher terms ofls/du (d?s/dw?, d®s/dw’, andd*s/du?),  heat, and the increase fig, causes the increase in amplitude
we obtain the shape equations of buckling filaments. Since we control LC cell temperature
. carefully at slow cooling rates ok ~0.05°C/min, we re-
ke(i® = 207+ 2K) = xx = 0, (19) gard that the buckling filaments are in quasiequilibrium and
) _ that the value oky, is a constant.
2kT+ k7=0. (20) In bulk smecticA LC, the layer buckling10] is known as

These are the shape equations for the buckled filament SuGxternal(electrlc or magneticfield-induced transition. The
jected to the constraint conditiqthe length of the filament periodically buckled filaments shown here are apparently dif-
is constant ferent from the field-induced transition. Layer buckling in

the smecticA phase induced by dilative strain has been re-

ported [11], however, this layer buckling is also different

from the buckling filaments because the buckling filaments

consist of concentric tubes, whereas the bulk LCs consist of
We show an analytical solution to the shape equationstacked planes of a smec#cphase.

[Egs.(19) and(20)]. We define the tangential unit vector of It is likely that the buckling of smecti¢: filaments is a

FIG. 3. Solutions to the shape equations for a buckled filamen
corresponding to the filaments shown in Fig. 2. The bars indicat
50 pm.

IV. DISCUSSION

r(s) to be phenomenon similar to that of elastic columns known in
. classical mechanics; elastic columns undergo displacements
t(s) =[cos ¢(s),sin ¢(s),0]. (21)  when applied forces reach the critical buckling log@ls The
Inserting Eq.(21) into Egs.(19) and(20) we have differences between the buckling of the smed&ititaments

and that of elastic columns are the driving forces and the
¢2 *+*coi¢ S — o], (22) int_e_rnal forces which oceur When the bodies buckle. The
ke ke 0 driving forces for buckling of elastic columns are externally
) ) _ _ applied forces. Under the action of applied forces, the elastic
wheref is a positive constanip, is an integration constant, columns change in shape and volume while keeping their
and ¢=d¢/ds Figure 3 shows the solutions to H&2) with masses, and extension and compression parts in the de-
different values of andy. The values used in the calculation formed columns cause internal forces. In case of the smectic-
were p,=3.0 um, p;=0.7 um, k;;=10 pN[14], andf=1.10, A filaments, the driving forces for buckling originate in the
0.93, 0.46, and 0.25 pN ang=-1.10, -0.74, -0.09, and elongation(growth) of the filamentgthis is the origin of the
0.02 pN for(a), (b), (c), and(d) in Fig. 3, respectivelyf and  loads on the smectié-filamenty, and the changes in mass as
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T T v T T T T T T V. CONCLUSIONS

We have studied the periodic buckling of smedaiidia-
ments both experimentally and theoretically. We have de-
scribed the curvature elastic energy of the smeatitament
by taking into account the internal forces caused by the splay
05 L _ deformation in smectié: filaments. Then, we have derived
L ] the shape equations of the smediddament with the peri-

L J odic boundary condition from the minimization of the curva-
L 4 ture elastic energy with the periodic boundary condition. It
R i has been found that an analytical solution to the shape equa-
0 L L ' tions well describes shapes of the periodically buckled fila-
0 200 400 600 800 1000 ment observed in the experiments. The buckling of smectic-
Length of the filament (u m/period) A filaments is different from the layer buckling in bulk
, smecticA LC in the sense that the smec#cfilaments in an

FIG. 4. The dependence of the load on the length of the filameniy i hic phase have a cylindrical structure, and the filaments
per period(the periodicity of the buckled filament is 76m). The 1, e not because of external-field application but because
load decreases with increasing length of the filament. S - - .

of forces originating in the elongation of the filaments. It is

well as in shape and volume take place when the bodielkely that the buckling of the filaments is a phenomenon
buckle. In addition, the buckling causes no extension or comsimilar to that of elastic columns described in classical me-
pression parts of the smecticfilaments since the filaments chanics. .
consist of smecti& layers that are regarded as two- The dependence of the load on the length of the filament
dimensional liquidg14]. Only the internal forces caused by has been numerically calculated based on the principle of
the Sp|ay deformation in smecti-filaments occur in this virtual work. We have found that the critical bUCk“ng load is
case. During the growth of the buckled filaments, the force®f the order of 1 pN and the load decreases with the lateral

caused by the splay deformation are balanced at each méisplacemeni{amplitudg of the buckled filament. The de-
ment with the loads. pendence of the load is contrary to that for elastic columns,

To understand the difference between the smektita-  Where the load of a buckled elastic column increases with the

ments and the elastic columns, we numerically calculate thiateral displacement. This is because the elastic column
dependence of the load on the length of the filaméine ~ buckles while keeping the mass constant, whereas the
lateral displacementamplitudg of the buckled filament smecticA filament buckles with an increase in length, and
grows with the length of the filamenhbased on the principle the buckling of the smectiATfiIament causes no extension or
of virtual work using Eqs(3) and(22). We see from Fig. 4 compression parts of the filament.

that the critical buckling load of the filament is of the order

of 1 pN and the load decreases with the length of the fila-

ment. It should be noted that the load of buckled elastic ACKNOWLEDGMENTS
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